Machine Learning for Physicists
Summer 2017
University of Erlangen-Nuremberg
Florian Marquardt
Florian.Marquardt@fau.de
http://machine-learning-for-physicists.org
Part One
(Image generated by a net with 20 hidden layers)
Artificial Neural Network
“light bulb”

(output layer)

(input layer)

(this particular picture has never been seen before!)

(Picture: Wikimedia Commons)
“light bulb”

(input layer)

(output layer)

(training images)

(Picture: Wikimedia Commons)
ImageNet competition

1.2 million training pictures (annotated by humans)
1000 object classes

2012: A deep neural network beats competition clearly (16% error rate; since then rapid decrease of error rate, down to about 7%)

Example applications of (deep) neural networks (see links on website)
e.g. http://machinelearningmastery.com/inspirational-applications-deep-learning/

Recognize images
Describe images in sentences
Colorize images
Translate languages (French to Spanish, etc.)
Answer questions about a brief text
Play video games & board games at superhuman level

(in physics:)
predict properties of materials
classify phases of matter
represent quantum wave functions
Lectures Outline

- Basic structure of artificial neural networks
- Training a network (backpropagation)
- Exploiting translational invariance in image processing (convolutional networks)
- Unsupervised learning of essential features (autoencoders)
- Learning temporal data, e.g. sentences (recurrent networks)
- Learning a probability distribution (Boltzmann machine)
- Learning from rare rewards (reinforcement learning)
- Further tricks and concepts
- Modern applications to physics and science
- Basic structure of artificial neural networks
- Training a network (backpropagation)
- Exploiting translational invariance in image processing (convolutional networks)
- Supervised learning of essential features (autoencoders)
- Learning temporal data, e.g. sentences (recurrent networks)
- Learning a probability distribution (Boltzmann machine)
- Learning from rare rewards (reinforcement learning)
- Further tricks and concepts
- Modern applications to physics and science

Learning by doing!

Keras package for Python
Homework: (usually) explore via programming

We provide feedback if desired

No regular tutorial sessions

Original site:
http://www.thp2.nat.uni-erlangen.de/index.php/
2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt

New site:
http://machine-learning-for-physicists.org
Homework

First homework:
1. Install python & keras on your computer (see lecture homepage); questions will be resolved after second lecture **THIS IS IMPORTANT!**
2. Brainstorm: “Which problems could you address using neural networks?”

Next time: “installation party” after the lecture

Bring your laptop, if available (or ask questions)
Very brief history of artificial neural networks

- “Perceptrons”
 - 50s/60s

- “Recurrent networks”
- “Convolutional networks”
 - 80s/90s

- Deep nets for image recognition beat the competition
 - 2012

- “Backpropagation”
 - 80s (*1970)

- 1956 Dartmouth Workshop on Artificial Intelligence

- “Deep networks” become practical
 - early 2000s

- A deep net reaches expert level in “Go”
 - 2015
Lots of tutorials/info on the web...

recommend:
online book by Nielsen ("Neural Networks and Deep Learning") at https://neuralnetworksanddeeplearning.com

much more detailed book:
“Deep Learning” by Goodfellow, Bengio, Courville; MIT press; see also http://www.deeplearningbook.org

Software –
here: python & keras (builds on theano)
A neural network

= a nonlinear function (of many variables) that depends on many parameters
A neural network
output of a neuron = nonlinear function of weighted sum of inputs

input values y_1, y_2, y_3, ..., y_n
output of a neuron = nonlinear function of weighted sum of inputs

\[z = \sum_j w_j y_j + b \]

(offset, “bias”)

output value

weights \(w_1, w_2, w_3, \ldots \)

input values \(y_1, y_2, y_3, \ldots \)
output of a neuron = nonlinear function of weighted sum of inputs

weighted sum
\[z = \sum_j w_j y_j + b \] (offset, “bias”)

output value
\[f(z) \]

weights \[w_1, w_2, w_3, \ldots \]

input values \[y_1, y_2, y_3, \ldots \]
Each connection has a weight w
Each neuron has an offset b
Each neuron has a nonlinear function f (fixed)

The values of input layer neurons are fed into the network from the outside
\[f(z) = 0.5 \times 0.1 + 0.1 \times 1.3 \]
“feedforward” pass through the network: calculate output from input
“feedforward” pass through the network: calculate output from input
“feedforward” pass through the network: calculate output from input
“feedforward” pass through the network: calculate output from input
\(j = \text{output neuron} \)
\(k = \text{input neuron} \)

\[
z_j = \sum_k w_{jk} y_k^{\text{in}} + b_j
\]

in matrix/vector notation:
\[
z = w y^{\text{in}} + b
\]

elementwise nonlinear function:
\[
y_j^{\text{out}} = f(z_j)
\]
A very simple neural network (input to output)

In [494]: from numpy import * # get the "numpy" library for linear algebra

In [495]: N0=3 # input layer size
 N1=2 # output layer size

 w=random.uniform(low=-1,high=+1,size=(N1,N0)) # random weights: N1xN0
 b=random.uniform(low=-1,high=+1,size=N1) # biases: N1 vector

In [496]: y_in=array([0.2,0.4,-0.1]) # input values

In [498]: z=dot(w,y_in)+b # result: the vector of 'z' values, length N1
A few lines of "python"!

Python code:

```
z = dot(w, y) + b
```

In matrix/vector notation:

$$z_j = \sum_k w_{jk} y_k^{in} + b_j$$

In matrix/vector notation:

$$z = wy^{in} + b$$
A few lines of “python”!

Random weights and biases

N0=3 # input layer size
N1=2 # output layer size

w=random.uniform(low=-1, high=+1, size=(N1, N0)) # random weights: N1xN0
b=random.uniform(low=-1, high=+1, size=N1) # biases: N1 vector

y_in=array([0.2, 0.4, -0.1]) # input values

z=dot(w, y_in)+b # result: the vector of 'z' values, length N1
y_out=1/(1+exp(-z)) # the sigmoid function (applied elementwise)

Input values

Apply network!
A basic network (without hidden layer)

\[z = w_1 y_1 + w_2 y_2 + b \]
A basic network (without hidden layer)
Processing batches: Many samples in parallel

Avoid loops! (slow)
Processing batches: Many samples in parallel

one sample:

vector \((N_{\text{in}})\) \(\mathbf{y}\)

many samples:

matrix \((N_{\text{samples}} \times N_{\text{in}})\) \(\mathbf{y}\)

Apply matrix/vector operations to operate on all samples simultaneously! Avoid loops! (slow)

Note: Python interprets \(\mathbf{M} = \mathbf{A} + \mathbf{b}\)

First index of \(\mathbf{b}\) is ‘expanded’ to size indicated by \(\mathbf{A}\)
one sample:

\[z = \text{dot}(w, y) + b \]

vector (\(N_{\text{out}}\))

matrix (\(N_{\text{out}} \times N_{\text{in}}\))

vector (\(N_{\text{out}}\))

many samples:

\[z = \text{dot}(y, w) + b \]

matrix (\(N_{\text{samples}} \times N_{\text{in}}\))

matrix (\(N_{\text{samples}} \times N_{\text{out}}\))

matrix (\(N_{\text{in}} \times N_{\text{out}}\))

vector (\(N_{\text{out}}\))

becomes

\(N_{\text{samples}} \times N_{\text{out}}\)

Processing batches: Many samples in parallel
We can create complicated functions...

...but can we create arbitrary functions?

\[y_{\text{out}}(y_1, y_2) \]
Approximating an arbitrary nonlinear function

$F(y)$

y

y
Approximating an arbitrary nonlinear function
\[y_{\text{out}} = \delta F_1 f(w \cdot (y - Y_1)) + \delta F_2 f(w \cdot (y - Y_2)) \]

(f = sigmoid = smooth step)
\[y_{out} = \delta F_1 f(w \cdot (y - Y_1)) + \delta F_2 f(w \cdot (y - Y_2)) \]

(f = sigmoid = smooth step)

use biases:
\[b_1 = -wY_1 \]
\[b_2 = -wY_2 \]
\[\delta F_1 \delta F_2 \delta F_3 \delta F_4 \]

\[y_1 \quad y_2 \quad y_3 \quad y_4 \]

\[y \]
Approximating an arbitrary 2D nonlin. function
Approximating an arbitrary 2D nonlin. function

First step: create quarter-space “step function”
Trick: “AND” operation in a neural network

\[
y_{\text{out}} = f(w \cdot (y_1 + y_2 - 1.5))
\]

for large \(w \):

\[
\begin{array}{c| cc}
\hline
y_2 \quad | & 0 & 1 \\
\hline
y_1 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
\hline
\end{array}
\]

\[\begin{align*}
0 & \leq y_j \leq 1
\end{align*}\]
Trick: “AND” operation in a neural network

for large w:

<table>
<thead>
<tr>
<th></th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure out how to implement the following operations using a neural network:

OR

XOR (gives 1 only if inputs are different, i.e. for 10 and 01)
Approximating an arbitrary 2D nonlin. function

\[f(w \cdot (y_1 - \bar{y}_1)) \quad \text{AND} \quad f(w \cdot (y_2 - \bar{y}_2)) \]

\[y_{\text{out}} \]

\[\text{step in } y_1 \quad \text{step in } y_2 \]

\[y_2 \]

\[\bar{y}_2 \]

\[y_1 \]

\[\bar{y}_1 \]

\[0 \quad 0 \]

\[1 \]
(superimposing two such quarter-space functions)
Approximating an arbitrary 2D nonlin. function

\[\delta F_1, \delta F_2, \delta F_3 \]

\[\text{AND} \]

\[y_1, y_2 \]

\[y_2 \quad y_1 \]
Any arbitrary (smooth) function (with vector input and vector output) can be approximated as well as desired by a neural network with a single (!) hidden layer.

(as long as we allow for sufficiently many neurons)

“Approximation by superpositions of a sigmoidal function”, by George Cybenko (1989)
Figure out how to implement a 2D function that produces a (smoothened) square

Bonus version: how to get an arbitrary convex shape (approximately)?

Implement them on the computer and play around...
Extra * bonus version:

We have indicated how to approximate arbitrary functions in 2D using 2 hidden layers (with our AND construction, and summing up in the end)

Can you do it with a single hidden layer?
A neural network

Complicated nonlinear function that depends on all the weights and biases

\[y^{\text{out}} = F_w(y^{\text{in}}) \]

Note: When we write “w” as subscript of F, we mean all the weights and also biases.
Note: When we write “y^{\text{out}}”, we mean the whole vector of output values.
How to choose the weights (and biases) ?

By “training” with thousands of examples!
This is essentially nonlinear curve fitting!

Example for one output neuron and one input neuron

\[y^{\text{out}} = F_w(y^{\text{in}}) \]

curve depends on parameters \(w \)

adjust \(w \)!

training examples = known data points
Challenge:

Curve fitting with a million parameters!

maybe 1000s of input neurons (dimension of y^{in})
many 1000s of hidden layer neurons
millions of weights

need at least tens of thousands (or more) examples
Goal: Adapt weights to get closer to the "correct" answer (provided by the trainer)
Lecture Notes and Files [edit]

- PDF Slides Lecture 1 (8.5.2017)
- PDF Slides Lecture 2 v2 (11.5.2017)
- PDF The Python Cheat Sheet (many useful examples, on 2 pages)
- python code for visualizing the output of a multilayer network (demonstrates batch processing and produces a nice picture)
- PDF Slides Lecture 3 v3 (22.5.2017)

Elementary

Assign a variable and print the square of it:

```python
x = 2
print(x**2)
```

Run a loop over an integer i ranging from 0 to 3. Note the indentation (by a tab or four spaces) to mark the body of the loop:

```python
for i in range(4):
    print(3)
```

Print "Deep finished":

```python
print("Deep finished")
```

Include all the numbers from the numpy linear algebra package:

```python
from numpy import *
```

Create a vector containing 650 numbers evenly spaced between 0 and 1.75:

```python
x = linspace(0, 1.75, 650)
```

Plot the help for "linspace":

```python
help(linspace)
```

Plot the third element of that array (index takes values 0, 1, 2, ...):

```python
print(x[2])
```

Apply some function to x (elementwise, to each element of x separately). Do not use loop

```python
gamma(x)
```

Plotting

Include all the routines for plotting. The second line sets the layout notebook to display the plots directly inside the notebook:

```python
from matplotlib import pyplot as plt
```

Plot y = x:

```python
plt.plot(x, y, linewidth=0, color='red'); plt.show()
```

Make a (50x50) grid of x and y values (coordinates of points in a rectangle, used for an image):

```python
x,y = meshgrid(linspace(xmin, xmax, 50),
              linspace(ymin, ymax, 50))
```

Create a 2D plot (values shown as dots):

```python
plt.imshow(arr, origin='lower', interpolation='none',
          extent=[xmin, xmax, ymin, ymax],
          cmap=colormap, alpha=alpha)
plt.colorbar()
plt.show()
```

Make a 3D surface plot:

```python
from mpl_toolkits.mplot3d import Axes3D
```

Plot a 3D surface:

```python
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
```

Plot a surface in the extra dimensions:

```python
ax.plot_surface(x, y, z)
```

Save a figure into a pdf:

```python
f = plt.figure()
plt.plot(x, y), plt.savefig('test.pdf', bbox_inches='tight')
```

Define a function. This one depends on a plot parameter k (that has to be defined somewhere):

```python
def f(x):
    return sin(x**k)
```

Some more linear algebra

Set up a 6x3 matrix (first full, then with zeros, then with elements)

```python
A = zeros((4,2))
A[0,0] = 1; A[1,1] = 2; A[3,2] = 42
```

The same matrix could have been set up equivalently by declaring the locations and values:

```python
A[0,1] = 1; A[2,2] = 2; A[3,1] = 42
```

Define a vector and perform matrix-vector multiplication:

```python
x = [12, 3.5, -7]
```

This also works for matrix multiplication:

```python
nrows = [4, 3]; ncols = [3, 1];
```

Create random numbers. Gaussian in a 3x4 matrix:

```python
.randn(3, 4)
```

Uniformly distributed on a vector of length 3:

```python
random.uniform(low=0, high=10)
```
A neural network

\[y_{out} = F_w(y_{in}) \]

Note: When we write “w” as subscript of F, we mean all the weights and also biases
Note: When we write “y_{out}”, we mean the whole vector of output values
We have: \(y^{\text{out}} = F_w(y^{\text{in}}) \)

neural network
(w here also stands for the biases)

We would like: \(y^{\text{out}} \approx F(y^{\text{in}}) \)

desired “target” function

Cost function measures deviation:

\[
C(w) = \frac{1}{2} \langle \| F_w(y^{\text{in}}) - F(y^{\text{in}}) \| ^2 \rangle
\]

vector norm

average over all samples
Approximate version, for N samples:

$$C(w) \approx \frac{1}{2} \frac{1}{N} \sum_{s=1}^{N} \left\| F_w(y^{(s)}) - F(y^{(s)}) \right\|^2$$

$s=$ index of sample

Minimizing C for this case: “least-squares fitting”!
Method: “Sliding down the hill”
(“gradient descent”)
\[\dot{w} \sim -\nabla_w C(w) \]

A physicist would say:
motion of an overdamped particle (velocity set by force)
Problem: Evaluating C would mean averaging over ALL training samples

Solution: Only average over a few samples, get approximate C

Discrete steps: for each step evaluate a few samples and update weights according to:

$$
\omega_j \rightarrow \omega_j - \eta \frac{\partial \tilde{C}(\omega)}{\partial \omega_j}
$$

(approximate version of C)

(take different samples in each step!)

(Note: just as before, the biases b are included here, think of them as extra parameters ω)
For sufficiently small steps: sum over many steps approximates true gradient (because it is an additional average).
\[
\frac{\partial C(w)}{\partial w_*} = ?
\]

some weight (or bias), somewhere in the net

It’s time to use the chain rule!
Small network: Calculate derivative of cost function “by hand”

INPUT \[y_1\] \[y_2\]

OUTPUT \[f(z)\]

\[z = w_1 y_1 + w_2 y_2 + b\]

\[C(w) = \frac{1}{2} \langle (f(z) - F(y_1, y_2))^2 \rangle\]

\[
\frac{\partial C}{\partial w_1} = \left\langle (f(z) - F) f'(z) \frac{\partial z}{\partial w_1} \right\rangle
\]

\[
\frac{\partial z}{\partial w_1} = y_1
\]
Now for the full network!

Need to keep track of indices carefully:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_{j}^{(n)}$</td>
<td>Value of neuron j in layer n</td>
</tr>
<tr>
<td>$z_{j}^{(n)}$</td>
<td>Input value for “$y=f(z)$”</td>
</tr>
<tr>
<td>$w_{jk}^{n,n-1}$</td>
<td>Weight (neuron k in layer $n-1$ feeding into neuron j in layer n)</td>
</tr>
</tbody>
</table>
Backpropagation

We have:

\[C(w) = \langle C(w, y^{\text{in}}) \rangle \]

cost value for one particular input

We get:

\[
\frac{\partial C(w, y^{\text{in}})}{\partial w_*} = \sum_j (y_j^{(n)} - F_j(y^{\text{in}})) \frac{\partial y_j^{(n)}}{\partial w_*}
\]

\[
= \sum_j (y_j^{(n)} - F_j(y^{\text{in}})) f'(z_j^{(n)})\frac{\partial z_j^{(n)}}{\partial w_*}
\]

some weight (or bias), somewhere in the net

(we used:)

\[y_j^{(n)} = f(z_j^{(n)}) \]
Apply chain rule repeatedly

We want: Change of neuron j in layer n due to change of some arbitrary weight \mathcal{W}_*:

$$\frac{\partial z_j^{(n)}}{\partial \mathcal{W}_*} = \sum_k \frac{\partial z_j^{(n)}}{\partial y_k^{(n-1)}} \frac{\partial y_k^{(n-1)}}{\partial \mathcal{W}_*} = \sum_k \mathcal{W}_{jk}^{n,n-1} f'(z_k^{(n-1)}) \frac{\partial z_k^{(n-1)}}{\partial \mathcal{W}_*}$$

And now: the same again (recursion)
Important insight: Each pair of layers $[n, n-1]$ contributes multiplication with the following matrix:

$$M_{jk}^{(n,n-1)} = w_{jk}^{(n,n-1)} f'(z_k^{(n-1)})$$
Backpropagation

Repeated matrix multiplication, going down the net:

\[
\frac{\partial z^{(n)}_j}{\partial w_*} = \sum_{k,l,...,u,v} M^{n,n-1}_{jk} M^{n-1,n-2}_{kl} \cdots M^{\tilde{n}+1,\tilde{n}}_{uv} \frac{\partial z^{(\tilde{n})}_v}{\partial w_*}
\]
What happens when we finally encounter the weight with respect to which we wanted to calculate the derivative of the cost function?

If \mathbf{w}_* was really a weight:

$$\frac{\partial z_j^{(\tilde{n})}}{\partial w_{jk}^{\tilde{n},\tilde{n} - 1}} = y_k^{(\tilde{n} - 1)}$$

...if it was a bias:

$$\frac{\partial z_j^{(\tilde{n})}}{\partial b_j^{\tilde{n}}} = 1$$
Backpropagation

We have:

\[C(w) = \langle C(w, y^{in}) \rangle \]

cost value for one particular input

In total, we get:

\[
\frac{\partial C(w, y^{in})}{\partial w_*} = \sum_j (y_j^{(n)} - F_j(y^{in})) \frac{\partial y_j^{(n)}}{\partial w_*}
\]
\[
= \sum_j (y_j^{(n)} - F_j(y^{in})) f'(z_j^{(n)}) \frac{\partial z_j^{(n)}}{\partial w_*}
\]

How to evaluate this: construct vector for output layer n, and then multiply with matrices from the right (as shown above)
1. Initialize vector from output layer:
\[\Delta_j = (y_j^n - F_j(y^{\text{in}})) f'(z_j^n) \]

2. For each layer: store outcomes (cost derivatives) for all weights and biases \(\mathbf{W}_* \) in that layer
\[\frac{\partial C(w, y^{\text{in}})}{\partial \mathbf{w}_*} = \Delta_j \frac{\partial z_j^{(n)}}{\partial \mathbf{w}_*} \]
(j is the index where this particular weight appears)

3. Multiply vector by matrix
\[\Delta_k^{\text{new}} = \sum_j \Delta_j M_{jk}^{n, n-1} \]
(\& return to step 2)
Very efficient: One single backpropagation pass through the network yields ALL the derivatives of C with respect to all the weights and biases!

No more effort than forward propagation!

Huge ("million-fold") advantage over naive approach of calculating numerically derivatives for all weights individually!
Backpropagation

Physical intuitive picture:

“force” tries to pull into direction of correct outcome

adjusts all weights (& biases) in layers below
In each layer:

$$\frac{\partial C(w, y^{in})}{\partial w_*} = \Delta_j \frac{\partial z_j^{(n)}}{\partial w_*}$$

<table>
<thead>
<tr>
<th>Weight:</th>
<th>Bias:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$\frac{\partial z_j^{(n)}}{\partial w_{n,n-1}^{jk}} = y_k^{(n-1)}$$</td>
<td>$$\frac{\partial z_j^{(n)}}{\partial b^n_j} = 1$$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>—— Averaging over samples: ——</td>
<td>—— Averaging over samples: ——</td>
</tr>
<tr>
<td>$$\frac{\partial C(w)}{\partial w_{n,n-1}^{jk}} = \langle \Delta_j y_k^{(n-1)} \rangle$$</td>
<td>$$\frac{\partial C(w)}{\partial b^n_j} = \langle \Delta_j \rangle$$</td>
</tr>
</tbody>
</table>
We are doing batch processing of many samples!

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y[layer]$</td>
<td>batchsize x neurons[layer]</td>
</tr>
<tr>
<td>Delta</td>
<td>batchsize x neurons[layer]</td>
</tr>
<tr>
<td>Weights[layer]</td>
<td>neurons[lower layer] x neurons[layer]</td>
</tr>
<tr>
<td>Biases[layer]</td>
<td>neurons[layer]</td>
</tr>
</tbody>
</table>

\[
\frac{\partial C(w)}{\partial w_{n,n-1}^{jk}} = \left\langle \Delta_j y_{k}^{(n-1)} \right\rangle \\
\frac{\partial C(w)}{\partial b_n^{j}} = \langle \Delta_j \rangle
\]

averaging: sum over batch index!

\[
dWeights[layer] = \text{dot}(\text{transpose}(y[lower\ layer]), \Delta)/\text{batchsize} \\
\text{neurons[lower layer] x batchsize}
\]

\[
 dBiases[layer] = \Delta.\text{sum}(0)/\text{batchsize} \\
\text{(summation over index 0=batch index)}
\]
We are doing batch processing of many samples!

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y[\text{layer}])</td>
<td>batchsize x neurons[\text{layer}]</td>
</tr>
<tr>
<td>Delta</td>
<td>batchsize x neurons[\text{layer}]</td>
</tr>
<tr>
<td>Weights[\text{layer}]</td>
<td>neurons[\text{lower layer}] x neurons[\text{layer}]</td>
</tr>
<tr>
<td>Biases[\text{layer}]</td>
<td>neurons[\text{layer}]</td>
</tr>
</tbody>
</table>

\[
\Delta_{k}^{\text{new}} = \sum_{j} \Delta_{j} M_{jk}^{n,n-1}
\]

with:
\[
M_{jk}^{(n,n-1)} = w_{jk}^{(n,n-1)} f'(z_{k}^{(n-1)})
\]

Take step from ‘layer’ down to ‘lower layer’:

\[
\Delta = \text{dot}(\Delta, \text{transpose}(\text{Weights})) \ast \text{df}_\text{layer}[\text{lower layer}]
\]

\(\text{batchsize x neurons[lower layer]} \)

\(f'(z) \) in lower layer

(first dimension will be expanded)
here: NumLayers=3 (count all, except input)

Implementation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weights[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biases[0]</td>
<td>y_layer[1]</td>
<td>df_layer[0]</td>
</tr>
<tr>
<td>Weights[0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(stores f'(z))

(Here: a 2x3 matrix)
Now: The full algorithm, with forward propagation and backpropagation!

(will store neuron values and f'(z) values during forward propagation, to be used later during backpropagation)
def net_f_df(z): # calculate f(z) and f'(z)
 val=1/(1+exp(-z))
 return(val,exp(-z)*(val**2)) # return both f and f'

def forward_step(y,w,b): # calculate values in next layer
 z=dot(y,w)+b # w=weights, b=bias vector for next layer
 return(net_f_df(z)) # apply nonlinearity

def apply_net(y_in): # one forward pass through the network
 global Weights, Biases, NumLayers
 global y_layer, df_layer # store y-values and df/dz
 y=y_in # start with input values
 y_layer[0]=y
 for j in range(NumLayers): # loop through all layers
 # j=0 corresponds to the first layer above input
 y,df=forward_step(y,Weights[j],Biases[j])
 df_layer[j]=df # store f'(z)
 y_layer[j+1]=y # store f(z)
 return(y)
```python
def backward_step(delta, w, df):
    # delta at layer N, of batchsize x layersize(N))
    # w [layersize(N-1) x layersize(N) matrix]
    # df = df/dz at layer N-1, of batchsize x layersize(N-1)
    return (dot(delta, transpose(w)) * df)

def backprop(y_target):
    # one backward pass
    # the result will be the 'dw_layer' matrices with
    # the derivatives of the cost function with respect to
    # the corresponding weight (similar for biases)
    global y_layer, df_layer, Weights, Biases, NumLayers
    global dw_layer, db_layer  # dCost/dw and dCost/db
    #(w,b=weights,biases)
    global batchsize

delta = (y_layer[-1] - y_target) * df_layer[-1]
dw_layer[-1] = dot(transpose(y_layer[-2]), delta) / batchsize
db_layer[-1] = delta.sum(0) / batchsize
for j in range(NumLayers - 1):
    delta = backward_step(delta, Weights[-1-j], ...
        ...df_layer[-2-j])
dw_layer[-2-j] = dot(transpose(y_layer[-3-j]), delta)...
        ... / batchsize
db_layer[-2-j] = delta.sum(0) / batchsize
```
Homework

Try out the effects of:
- Value of the stepsize eta
- Layout of the network (number of neurons and number of layers)
- Initialization of the weights

How do these things affect the speed of learning and the final quality (final value of the cost function)?

Try them out also for other test functions (other than in the example)
Homework

Change the output layer $f(z)$ to a LINEAR function, i.e. $f(z)=z$! Implement the required changes to the backpropagation code.

Apply this to the example case (learning a 2D function; see code on the website).
Neural Net Structure

Stochastic Gradient Descent

Backpropagation
Backpropagation: the principle

$$\frac{\partial C}{\partial w_*} = ?$$
Backpropagation: the principle

\[
\frac{\partial C}{\partial w_*} = ? \quad \text{\(y^{\text{out}} - F(y^{\text{in}})\)}
\]

(omitting indices, should be clear from figure)
Backpropagation: the principle

\[
\frac{\partial C}{\partial w_*} = ?
\]

\(y^{\text{out}} - F(y^{\text{in}})
\]

\(f'(z)
\)

(omitting indices, should be clear from figure)
Backpropagation: the principle

\[
\frac{\partial C}{\partial w_*} = ?
\]

\[
y_{\text{out}} - F(y_{\text{in}})
\]

\[
f'(z)
\]

(omitting indices, should be clear from figure)
\[
\frac{\partial C}{\partial w_*} = ?
\]

\[y_{\text{out}} - F(y_{\text{in}}), \quad f'(z)\]

Backpropagation: the principle

(omitting indices, should be clear from figure)
Backpropagation: the principle

\[\frac{\partial C}{\partial w_\ast} = \]?

\[C \]

\[y^{\text{out}} - F(y^{\text{in}}) \]

\[f'(z) \]

\[w \]

\[y \]

\[w_\ast \]

\[f'(z) \]

(omitting indices, should be clear from figure)
Backpropagation: the principle

\[
\frac{\partial C}{\partial w_*} = ?
\]

and now: sum over ALL possible paths!

\[
y_{\text{out}} - F(y_{\text{in}})
\]

efficient implementation: repeated matrix/vector multiplication

(omitting indices, should be clear from figure)
Backpropagation

1. Initialize vector from output layer:
 \[
 \Delta_j = (y_j^n - F_j(y_\text{in})) f'(z_j^n)
 \]

2. For each layer: store outcomes (cost derivatives) for all weights and biases \(\mathbf{w}_* \) in that layer
 \[
 \frac{\partial C(w, y^{\text{in}})}{\partial w_*} = \Delta_j \frac{\partial z_j^{(n)}}{\partial w_*}
 \]
 (j is the index where this particular weight appears)

3. Multiply vector by matrix
 \[
 \Delta_{\text{new}} = \sum_j \Delta_j M_{j,k}^{n,n-1}
 \]
 (& return to step 2)

Summary
similar to Feynman sum over paths (path integral)

\[\Psi(t) = \hat{U}(t)\Psi(0) = \hat{U}_1\hat{U}_2\hat{U}_3 \ldots \Psi(0) \]
def net_f_df(z): # calculate f(z) and f'(z)
 val=1/(1+exp(-z))
 return(val,exp(-z)*(val**2)) # return both f and f'

def forward_step(y,w,b): # calculate values in next layer
 z=dot(y,w)+b # w=weights, b=bias vector for next layer
 return(net_f_df(z)) # apply nonlinearity

def apply_net(y_in): # one forward pass through the network
 global Weights, Biases, NumLayers
 global y_layer, df_layer # store y-values and df/dz
 y=y_in # start with input values
 y_layer[0]=y
 for j in range(NumLayers): # loop through all layers
 # j=0 corresponds to the first layer above input
 y,df=forward_step(y,Weights[j],Biases[j])
 df_layer[j]=df # store f'(z)
 y_layer[j+1]=y # store f(z)
 return(y)

def backward_step(delta,w,df):
 # delta at layer N, of batchsize x layersize(N))
 # w [layersize(N-1) x layersize(N) matrix]
 # df = df/dz at layer N-1, of batchsize x layersize(N-1)
 return(dot(delta,transpose(w))*df)

def backprop(y_target): # one backward pass
 global y_layer, df_layer, Weights, Biases, NumLayers
 global dw_layer, db_layer # dCost/dw and dCost/db
 #(w,b=weights,biases)
 global batchsize

delta=(y_layer[-1]-y_target)*df_layer[-1]
dw_layer[-1]=dot(transpose(y_layer[-2]),delta)/batchsize
db_layer[-1]=delta.sum(0)/batchsize
 for j in range(NumLayers-1):
 delta=backward_step(delta,Weights[-1-j],df_layer[-2-j])
dw_layer[-2-j]=dot(transpose(y_layer[-3-j]),delta)/batchsize
db_layer[-2-j]=delta.sum(0)/batchsize
Neural networks: the ingredients

General purpose algorithm: feedforward & backpropagation (implement once, use often)

Problem-specific:
Choose network layout (number of layers, number of neurons in each layer, type of nonlinear functions, maybe specialized structures of the weights) **“Hyperparameters”**

Generate training (& validation & test) samples: load from big databases (that have to be compiled from the internet or by hand!) or produce by software

Monitor/optimize training progress (possibly choose learning rate and batch size or other parameters, maybe try out many combinations) **“Hyperparameters”**
Example: Learning a 2D function

Evaluate at sample points

see notebook (on website): MultiLayerBackProp
Example: Learning a 2D function

see notebook (on website): MultiLayerBackProp

```python
# pick batchsize random positions in the 2D square

def make_batch():
    global batchsize

    inputs = random.uniform(low=-0.5, high=+0.5, size=[batchsize, 2])
    targets = zeros([batchsize, 1])  # must have right dimensions
    targets[:, 0] = myFunc(inputs[:, 0], inputs[:, 1])

    return (inputs, targets)
```

```python
eta = .1
batchsize = 1000
batches = 2000
costs = zeros(batches)

for k in range(batches):
    y_in, y_target = make_batch()
    costs[k] = train_net(y_in, y_target, eta)
```
Example: Learning a 2D image

see notebook (on website): MultiLayer_ImageCompression
Network layers: 2, 150, 150, 100, 1 neurons
(after about 2min of training, ~4 Mio. samples)
Reminder: ReLU (rectified linear unit)

\[f(z) = \begin{cases}
 z & \text{for } z > 0 \\
 0 & \text{for } z \leq 0
\end{cases} \]

\[z = wy + b \]
à la Franz Marc?
Try to understand how the network operates!
Switching on only a single neuron of the last hidden layer

Image shows results of switching on individually each of 100 neurons
Weights from last hidden layer to output

- Deleted first 50 weights
- Deleted last 50 weights
- Kept only 10 out of 100

Weights from 2nd hidden layer to last hidden layer

- Deleted first 75
- Deleted last 75
- Kept only 10 out of 150
Weights from 1st hidden layer to 2nd hidden layer

deleted first 75

deleted last 75

kept only 10 out of 150
Influence of learning rate (stepsize)

\[\text{eta}=0.1 \]

(batchsize=1000)

\[\text{eta}=0.1 \]
Influence of learning rate (stepsize)

(batchsize=1000)

eta=0.1
eta=0.2
Influence of learning rate (stepsize)

(batchsize=1000)
Influence of learning rate (stepsize) (batchsize=1000)

- eta=0.1
- eta=0.2
- eta=0.5
- eta=1.0

Cost vs. batch
Randomness (initial weights, learning samples)

Cost

(batchsize=1000) all: \(\text{eta}=1.0 \)

Learning is a stochastic, nonlinear process!
Influence of batch size / learning rate

Small batch size and large learning rate together are problematic!

(batchsize=20)
eta=0.1
eta=0.2
eta=0.5
eta=1.0

Cost
Influence of batch size / learning rate

\[C(w - \eta \nabla_w C) \approx C(w) - \eta (\nabla_w C)(\nabla_w C) + \ldots \]

always >0

decrease in C!

new weights

Potential problems:
- step too large: need higher-order terms
 [will not be a problem near minimum of C]
- approx. of C bad [small batch size: approx. C fluctuates]

Sufficiently small learning rate: multiple training steps (batches) add up, and their average is like a larger batch
Programming a general multilayer neural network & backpropagation was not so hard (once you know it!)
Could now go on to image recognition etc. with the same program!

But: want more flexibility and added features!

For example:
• Arbitrary nonlinear functions for each layer
• Adaptive learning rate
• More advanced layer structures (such as convolutional networks)
• etc.
Keras

- Convenient neural network package for python
- Set up and training of a network in a few lines
- Based on underlying neural network / symbolic differentiation package [which also provides run-time compilation to CPU and GPU]: either ‘theano’ or ‘tensorflow’ [User does not care]
“Keras is a high-level neural networks API, written in Python and capable of running on top of either TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.”
from keras import *
from keras.models import Sequential
from keras.layers import Dense

Defining a network

layers with 2, 150, 150, 100, 1 neurons

net=Sequential()
net.add(Dense(150, input_shape=(2,), activation='relu'))
net.add(Dense(150, activation='relu'))
net.add(Dense(100, activation='relu'))
net.add(Dense(1, activation='relu'))

‘Compiling’ the network

net.compile(loss='mean_squared_error',
 optimizer=optimizers.SGD(lr=0.1),
 metrics=['accuracy'])
from keras import *
from keras.models import Sequential
from keras.layers import Dense

Defining a network

“Sequential”: the usual neural network, with several layers

net = Sequential()
net.add(Dense(150, input_shape=(2,), activation='relu'))
net.add(Dense(150, activation='relu'))
net.add(Dense(100, activation='relu'))
net.add(Dense(1, activation='relu'))

“Dense”: “fully connected layer” (all weights there)

input_shape: number of input neurons

‘relu’: rectified linear unit

‘Compiling’ the network

SGD = stochastic gradient descent
net.compile(loss='mean_squared_error',
 optimizer=optimizers.SGD(lr=0.1),
 metrics=['accuracy'])

‘loss’ = cost

lr = learning rate = stepsize
Training the network

```python
batchsize=20
batches=200
costs=zeros(batches)

for k in range(batches):
y_in, y_target = make_batch()
costs[k] = net.train_on_batch(y_in, y_target)[0]
```

- `y_in` array dimensions ‘batchsize’ x 2
- `y_target` array dimensions ‘batchsize’ x 1

(just like before, for our own python code)
Predicting with the network

```python
y_out = net.predict_on_batch(y_in)
```

- `y_in` array dimensions ‘batchsize’ x 2
- `y_out` array dimensions ‘batchsize’ x 1

(just like before, for our own python code)
Explore how well the network can reproduce various features of target images, and how that depends on the network layout!

Aspects to consider (& I do not claim to know all the answers!):

How good are other nonlinear functions? [e.g. sigmoids or your own favorite f(z)]

Given a fixed total number of weights, is it better to go deep (many layers) or shallow?

Bonus: After training, try to ‘prune’ the network, i.e. delete neurons whose deletion does not increase the cost function too much!
2,150,150,100,1 network after 11 Mio. samples, using some smart adaptive learning rate (‘adam’).
after 10 Mio. samples, using some smart adaptive learning rate (‘adam’)

2,500,500,300,1 network

(about 10 mins on a laptop)

2,500,500,300,1 network
after 10 Mio. samples, using some smart adaptive learning rate (‘adam’)
after 20 Mio. samples, using some smart adaptive learning rate ('adam')

2,500,500,300,1 network

(about 20 mins on a laptop)

2,500,500,300,1 network after 20 Mio. samples, using some smart adaptive learning rate ('adam')
Emmy Noether (1882-1935)
Erlangen, Göttingen, Bryn Mawr/USA
“Emmy Noether”!
Handwriting recognition

“MNIST” data set (for postal code recognition)
http://yann.lecun.com/exdb/mnist/
Will learn:
- distinguish categories
- “softmax” nonlinearity for probability distributions
- “categorical cross-entropy” cost function
- training/validation/test data
- “overfitting” and some solutions
output: category classification
“one-hot encoding”

28x28 input pixels (=784 gray values)
network learns to represent **one** specific image

network learns to classify a **whole** class of images
output: probabilities (select largest)

28x28 input pixels (=784 gray values)
“Softmax” activation function

Generate normalized probability distribution, from arbitrary vector of input values

\[
f_j(z_1, z_2, \ldots) = \frac{e^{z_j}}{\sum_{k=1}^{N} e^{z_k}}
\]

(multi-variable generalization of sigmoid)
“Softmax” activation function

\[f_j(z_1, z_2, \ldots) = \frac{e^{z_j}}{\sum_{k=1}^{N} e^{z_k}} \]

in keras:

```python
net.add(Dense(10, activation='softmax'))
```
For any probability distribution:

\[S = - \sum_j p_j \ln p_j \]

(non-negative, additive for factorizable distributions)
Categorical cross-entropy cost function

\[C = - \sum_{j} y_{j}^{\text{target}} \ln y_{j}^{\text{out}} \]

where \(y_{j}^{\text{target}} = F_{j}(y^{\text{in}}) \)

is the desired “one-hot” classification, in our case

Check: is non-negative and becomes zero for the correct output!

in keras:
```
net.compile(loss='categorical_crossentropy',
            optimizer=optimizers.SGD(lr=1.0),
            metrics=['categorical_accuracy'])
```
Categorical cross-entropy cost function

\[C = - \sum_j y_j^{\text{target}} \ln y_j^{\text{out}} \]

Advantage: Derivative does not get exponentially small for the saturated case (where one neuron value is close to 1 and the others are close to 0)

\[f_j(z_1, z_2, \ldots) = \frac{e^{z_j}}{\sum_{k=1}^N e^{z_k}} \]

\[\ln f_j(z) = z_j - \ln \sum e^{z_k} \]

\[\frac{\partial \ln f_j(z)}{\partial w} = \frac{\partial z_j}{\partial w} - \sum_k \frac{\partial z_k}{\partial w} \frac{e^{z_k}}{\sum_k e^{z_k}} \]

derivative of input values
Compare situation for quadratic cost function

\[f_j(z_1, z_2, \ldots) = \frac{e^{z_j}}{\sum_{k=1}^{N} e^{z_k}} \]

\[
\frac{\partial}{\partial w} \sum_j (f_j(z) - y_j^{\text{target}})^2 = \]

\[
= 2 \sum_j (f_j(z) - y_j^{\text{target}}) \frac{\partial f_j(z)}{\partial w}
\]

slope becomes exponentially small!

training may get ‘stuck’ for a long time!
Training on the MNIST images

(see code on website)

training_inputs array num_samples x numpixels

training_results array num_samples x 10

(“one-hot”)

in keras:

```python
history=net.fit(training_inputs,
training_results,batch_size=100,epochs=30)
```

One “epoch” = training once on all 50000 training images, feed them into net in batches of size 100

Here: do 30 of those epochs
Accuracy during training

seems very good!
only <3% error !(?)

net: 784(input), 30, 10(output)
But: About 7 % of the test samples are labeled incorrectly!
Problem: assessing accuracy on the training set may yield results that are too optimistic!

Need to compare against samples which are not used for training! (to judge whether the net can ‘generalize’ to unseen samples)
How to honestly assess the quality during training

- **Training set** (used for training)
- **Validation set** (never used for training, but used during training for assessing accuracy)
- **Test set** (never used during training, only later to test fully trained net)

(numbers for our MNIST example)
Accuracy during training

epochs [1 epoch ~ 50000 images]

accuracy on training data

accuracy on validation data

goes down again!

“overfitting”

net: 784(input), 30, 10(output)
Network "memorizes" the training samples (excellent accuracy on training samples is misleading) and cannot generalize to unfamiliar data.

what to do:
- Always measure accuracy against validation data, independent of training data.
- Strategy: stop after reaching maximum in validation accuracy ("early stopping").
- Strategy: generate fresh training data by distorting existing images (or produce all training samples algorithmically, never repeat a sample!)
- Strategy: "dropout" — set to zero random neuron values during training, such that the network has to cope with that noise and never learns too much detail.
Accuracy during training

- Accuracy on training data
- Accuracy on validation data

Net: 784 (input), 100, dropout 10%, 50, 10 (output)

(3% mistakes on test data)
Generating new training images by transformations
Comparison of machine learning methods on MNIST

>60 entries on http://yann.lecun.com/exdb/mnist/

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classifier (1 layer NN)</td>
<td>12%</td>
</tr>
<tr>
<td>2 layer (300 hidden)</td>
<td>4.7%</td>
</tr>
<tr>
<td>2 layer (800 hidden)</td>
<td>1.6%</td>
</tr>
<tr>
<td>2 layer (300 hidden), with image preprocessing (deskewing)</td>
<td>1.6%</td>
</tr>
<tr>
<td>2 layer (800 hidden), distorted images</td>
<td>0.7%</td>
</tr>
<tr>
<td>6 layers, distorted images 784/2500/2000/1500/1000/500/10</td>
<td>0.35%</td>
</tr>
<tr>
<td>conv. net “LeNet-1”</td>
<td>1.1%</td>
</tr>
<tr>
<td>committee of 35 conv. nets, with distorted images</td>
<td>0.23%</td>
</tr>
</tbody>
</table>
Homework

Explore how well the network can do if you add noise to the images (or you occlude parts of them!)

Note: Either use the existing net, or train it explicitly on such noisy/occluded images!

Apply image recognition to some algorithmically generated images

“circle”

“square”
Convolutional Networks
Exploit translational invariance!

different image, same meaning!
Convolutions

\[F_{\text{new}}(x) = \int K(x - x') F(x') dx' \]

“kernel”

In physics:
- Green’s functions for linear partial differential equations (diffusion, wave equations)
- Signal filtering
Image filtering: how to blur...

original pixel

resulting pattern
Image filtering: how to obtain contours...
Alternative view:
Scan kernel over original (source) image
(& calculate linear, weighted superposition of original pixel values)
“Fully connected (dense) layer”
“Convolutional layer”

Same weights (="kernel"="filter") used for each neuron in the top layer!
“Convolutional layer”

(simplified picture)

Same weights (="kernel"="filter") used for each neuron in the top layer!
Scan kernel over original (source) image

Different from image processing: **learn** the kernel weights!
Convolutional neural networks

Exploit translational invariance (features learned in one part of an image will be automatically recognized in different parts)

Drastic reduction of the number of weights stored!

fully connected: N^2 ($N=$ size of layer/image)
convolutional: M ($M=$ size of kernel)

independent of the size of the image!

lower memory consumption, improved speed
Several filters (kernels)

e.g. one for smoothing, one for contours, etc.

several ‘channels’
in keras:

2D convolutional layer

input: N\times N image, only 1 channel [need to specify this only for first layer after input]

```python
net.add(Conv2D(input_shape=(N,N,1), filters=20, kernel_size=[11,11], activation='relu',padding='same'))
```

next layer will be N\times N\times 20 (20 channels!)

kernel size (region)

what to do at borders (here: force image size to remain the same)
Reducing the resolution

“max pooling”
“average pooling”

max or avg
in keras:

```python
net.add(AveragePooling2D(pool_size=8))
```
Enlarging the image size (again)
in keras:

```
net.add(UpSampling2D(size=8))
```

(simply repeats values)
A fully developed convolutional net
in this example: will need 6x3=18 filters, each of size KxK (thus: store 18xKxK weights!)

Note: keras automatically takes care of all of this, need only specify number of channels
Handwritten digits recognition with a convolutional net

Input: 28x28

Convolution layer: 7 x (28x28) (7 channels)

Subsampling /4: 7 x (7x7)

Output:
- Dense layer
- Softmax
initialize the convolutional network

def init_net_conv_simple():
 global net, M
 net = Sequential()
 net.add(Conv2D(input_shape=(M,M,1), filters=7, kernel_size=[5,5], activation='relu', padding='same'))
 net.add(AveragePooling2D(pool_size=4))
 net.add(Flatten()) # needed for transition to dense layer!
 net.add(Dense(10, activation='softmax'))
 net.compile(loss='categorical_crossentropy', optimizer=optimizers.SGD(lr=1.0), metrics=['categorical_accuracy'])

note: M=28 (for 28x28 pixel images)
epoch accuracy on training data
accuracy on validation data
Error on test data: <1.8%
The convolutional filters

Interpretation: try to extract common features of input images!

“diagonal line”, “curve bending towards upper right corner”, etc.
An aside: Gabor filters

2D Gauss times sin-function encodes orientation and spatial frequency useful for feature extraction in images (e.g. detect lines or contours of certain orientation)

believed to be good approximation to first stage of image processing in visual cortex
Let’s get more ambitious! Train a two-stage convolutional net!
Does not learn at all! Gets 90% wrong!

Error on test data: ~90%

accuracy on training data

accuracy on validation data
same net, with adaptive learning rate (see later; here: ‘adam’ method)

accuracy on training data
accuracy on validation data

Error on test data: $\sim 1.7\%$
try and extract the filters after longer training (possibly with enforcing sparsity)
Unsupervised learning

Extracting the crucial features of a large class of training samples without any guidance!
- Goal: reproduce the input (image) at the output
- An example of unsupervised learning (no need for ‘correct results’ / labeling of data!)
- Challenge: feed information through some small intermediate layer (‘bottleneck’)
- This can only work well if the network learns to extract the crucial features of the class of input images
- a form of data compression (adapted to the typical inputs)
Still: need a lot of training examples
Here: generate those examples algorithmically

for example: randomly placed circle
Our convolutional autoencoder network

(20 channels in all intermediate steps)
cost function for a single test image

sum of quadratic deviation

training batches (batchsize: 10)
Can make it even more challenging: produce a cleaned-up version of a noisy input image!

“denoising autoencoder”
Stacking autoencoders

(re-use weights from previous stage)
“greedy layer-wise training”

afterwards can ‘fine-tune’ weights by training all of them together, in the large multi-layer network
Using the encoder part of an autoencoder to build a classifier (trained via supervised learning)

input

output = input

training the autoencoder = "pretraining"

category
dense
softmax
Sparse autoencoder:

force most neurons in the inner layer to be zero (or close to some average value) most of the time, by adding a modification to the cost function

This forces useful higher-level representations even when there are many neurons in the inner layer

(otherwise the network could just 1:1 feed through the input)
What are autoencoders good for?

- Autoencoders are useful for pretraining, but nowadays one can train deep networks (with many layers) from scratch.

- Autoencoders are an interesting example of unsupervised (or rather self-supervised) learning, but detailed reconstruction of the input (which they attempt) may not be the best method to learn important abstract features.

- Still, one may use the compressed representation for visualizing higher-level features of the data.

- Autoencoders in principle allow data compression, but are nowadays not competitive with generic algorithms like e.g. jpeg.
Imagine a purely linear autoencoder: which weights will it select?

Challenge: number of neurons in hidden layer is smaller than the number of input/output neurons

Each inner-layer neuron can be understood as the projection of the input onto some vector (determined by the weights belonging to that neuron)
Set restricted projector

$$\hat{P} = \sum_{j=1}^{M} |v_j\rangle \langle v_j|$$

where M is the number of neurons in the hidden layer, which is smaller than the size of the Hilbert space, and the vectors form an orthonormal basis (that we still want to choose in a smart way).

The network calculates:

$$\hat{P} |\psi\rangle$$

Mathematically: try to reproduce a vector (input) as well as possible with a restricted basis set!
Note: in the following, for simplicity, we assume the input vector to be normalized, although the final result we arrive at (principal component analysis) also works for an arbitrary set of vectors.
We want: \[|\psi\rangle \approx \hat{P} |\psi\rangle \]

“...for all the typical input vectors”

Note: We assume the average has already been subtracted, such that \[\langle |\psi\rangle \rangle = 0 \]

Choose the vectors “v” to minimize the average quadratic deviation

\[
\langle \| |\psi\rangle - \hat{P} |\psi\rangle \|^2 \rangle
\]

= \[
\langle \langle \psi |\psi\rangle - \langle \psi | \hat{P} \psi \rangle \rangle
\]
Solution: Consider the matrix
\[
\hat{\rho} = \langle |\psi\rangle \langle \psi| \rangle = \sum_j p_j |\psi^{(j)}\rangle \langle \psi^{(j)}|
\]
\[
\rho_{mn} = \langle \psi_m \psi_n^* \rangle
\]

This characterizes fully the ensemble of input vectors (for the purposes of linear operations)

[This is the covariance matrix of the vectors]
[compare density matrix in quantum physics!]

Claim:
Diagonalize this (hermitean) matrix, and keep the M eigenvectors with the largest eigenvalues. These form the desired set of “v”!
An example in a 2D Hilbert space:

the two eigenvectors of $\hat{\rho}$

(points=end-points of vectors in the ensemble)
Application to the MNIST database

\[\text{shape}(\text{training_inputs}) \quad \text{the MNIST images} \]
\[(50000, 784) \quad \text{subtract average} \]
\[\psi = \text{training_inputs} - \text{sum}(\text{training_inputs}, \text{axis}=0) / \text{num_samples} \]

\[\rho = \text{dot}(\text{transpose}(\psi), \psi) \quad \rho \text{ will be 784x784 matrix} \]

\[\text{vals, vecs} = \text{linalg.eig}(\rho) \]
\[\text{get eigenvalues- and vectors (already sorted, largest first)} \]

\[\text{plt.imshow(reshape(-vecs[:,0],[28,28]), origin='lower', cmap='binary', interpolation='nearest')} \]
\[\text{display the 28x28 image belonging to the largest eigenvector} \]
The first 6 PCA components (eigenvectors)

Can compress the information by projecting only on the first M largest components and then feeding that into a network.
All the eigenvalues

The first 100 sum up to more than 90% of the total sum
Neuron values in some intermediate layer represent input data in some interesting way, but they are hard to visualize! [there are more than 2 neurons in such a layer, typically]

Need some method to project down to 2 dimensions, keeping the distance relation qualitatively similar: “Which inputs are close to each other, which are very different?”

Can also apply this to the input data itself directly, or to some compressed version of it (like PCA components)!
MNIST sample images, reduced to 2D, using PCA

Obtain PCA, then plot components of each image with respect to two eigenvectors with largest eigenvalues (as a point in 2D plane)

Different colors = differently labeled images (diff. digits)

Some trends visible, but not well separated!
MNIST sample images, reduced to 2D, using “t-SNE”
[using python program by Laurens van der Maaten]
Different colors = differently labeled images (diff. digits)
Well-defined clusters!
(starts from 50 PCA components for each image; t-SNE takes about 10min)
Basic idea of dimensionality reduction: reproduce distances in higher-dimensional space inside the lower-dimensional “map”, as closely as possible.
Usually not perfectly possible: Remember the map-maker’s dilemma!

“two-point equidistant projection” (Wikipedia)
Can define cost-function, that depends on how close the distances of low-dimensional data points “y” are to those of high-dimensional points “x”

\[C = \sum_{i \neq j} F(|x_i - x_j|, |y_i - y_j|) \]

Then: minimize cost function, using e.g. gradient descent!

Points in low-dim. space repel if they are closer than their counterparts in high-dim. space, and attract otherwise

[Can introduce arbitrary (monotonous) functions of distances]
attractive forces, if high-dim. distance is smaller than represented here in low dim.

\[\dot{y}_j = - \frac{\partial C}{\partial y_j} \]

2-dim.
“Stochastic neighbor embedding” (SNE): Define “probability distributions” that depend not only on the distance but also include some normalization

\[p_{ij} \quad \text{Probability to pick a pair of points (i,j). Defined to be larger if they are close neighbors [in the high-dim. space]} \]

\[q_{ij} \quad \text{similar for low-dim. space} \]

\[\sum_{i \neq j} q_{ij} = 1 \quad \sum_{i \neq j} p_{ij} = 1 \]
Want q-distribution to be a close approximation of the p-distribution:

\[C = KL(P||Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_ij}. \]

“Kullback-Leibler divergence”, a way of comparing probability distributions.
Choices made for t-SNE
[for heuristics behind this see Hinton & v.d.Maaten 2008]

high-dim. space:
(Gaussians dist.)

\[p_{j|i} = \frac{\exp \left(-\|x_i - x_j\|^2 / 2\sigma_i^2 \right)}{\sum_{k \neq i} \exp \left(-\|x_i - x_k\|^2 / 2\sigma_i^2 \right)} \]

\[p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n} \]

low-dim. space:
(Cauchy dist. = “Student-t dist.”)

\[q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}} \]

q is comparatively larger at long distances: allows points in low-dim. space to spread out for intermediate distances (they do not have as much space as high-dim. points! need to give them more room!)
The t-SNE “force”:

\[
\frac{\delta C}{\delta y_i} = 4 \sum_j (p_{ij} - q_{ij})(y_i - y_j) \left(1 + \|y_i - y_j\|^2 \right)^{-1}
\]

spring-like sign depends on match between low- and high-dim. distributions

gravity”-like at larger distances
An example application from biophysics

“T-SNE visualization of large-scale neural recordings”
George Dimitriadis, Joana Neto, Adam Kampff

Multiple electrodes record voltage time-traces due to nearby spiking neurons: but which spike belongs to which neuron?

Visualizing the evolution during t-SNE optimization.

http://biorxiv.org/content/early/2016/11/14/087395.figures-only
take neurons out of a multi-layer convolutional network that classifies images, and represent using t-SNE

(example by Andrej Karpathy)

[t-SNE applied to a 4096-dim. representation]

http://cs.stanford.edu/people/karpathy/cnnembed/
take neurons out of a multi-layer convolutional network that classifies images, and represent using t-SNE (example by Andrej Karpathy)

[t-SNE applied to a 4096-dim. representation]

http://cs.stanford.edu/people/karpathy/cnnembed/
take neurons out of a multi-layer convolutional network that classifies images, and represent using t-SNE

(example by Andrej Karpathy)

[t-SNE applied to a 4096-dim. representation]
Open access to 1,276,278 e-prints in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics

Subject search and browse: Physics Search Form Interface Catchup

20 Apr 2017: Applied Physics subject area added to arXiv
10 Mar 2017: New members join arXiv Member Advisory Board
06 Mar 2017: arXiv Scientific Director Search
10 Feb 2017: Attention Submitters: our TeX processing system has been updated

Physics

- Astrophysics (astro-ph new, recent, find)
 includes: Astrophysics of Galaxies; Cosmology and Nongalactic Astrophysics; Earth and Planetary Astrophysics; High Energy Astrophysical Phenomena; Instrumentation and Methods for Astronomy; Instrumentation and Methods for Physics; Solar and Stellar Astrophysics
- Condensed Matter (cond-mat new, recent, find)
 includes: Disordered Systems and Neural Networks; Materials Science; Mesoscopic and Nanoscale Physics; Other Condensed Matter; Quantum Gases; Soft Condensed Matter; Statistical Mechanics; Strongly Correlated Electrons; Superconductivity
- General Relativity and Quantum Cosmology (gr-qc new, recent, find)
- High Energy Physics – Experiment (hep-ex new, recent, find)
- High Energy Physics – Lattice (hep-lat new, recent, find)
- High Energy Physics – Phenomenology (hep-ph new, recent, find)
- High Energy Physics – Theory (hep-th new, recent, find)
- Mathematical Physics (math-ph new, recent, find)
- Nonlinear Sciences (nlin new, recent, find)
 includes: Adaptation and Self-Organizing Systems; Cellular Automata and Lattice Gases; Chaotic Dynamics; Exactly Solvable and Integrable Systems; Pattern Formation and Solitons
- Nuclear Experiment (nucl-ex new, recent, find)
- Nuclear Theory (nucl-th new, recent, find)
- Physics (physics new, recent, find)
 includes: Accelerator Physics; Applied Physics; Atmospheric and Oceanic Physics; Atomic Physics; Atomic and Molecular Clusters; Biological Physics; Chemical Physics; Classical Physics; Computational Physics; Data Analysis, Statistics and Probability; Fluid Dynamics; General Physics; Geophysics; History and Philosophy of Physics; Instrumentation and Detectors; Medical Physics; Optics; Physics Education; Physics and Society; Plasma Physics; Popular Physics; Space Physics
- Quantum Physics (quant-ph new, recent, find)
The whole arXiv preprint server, represented as a 2D map
Paperscape uses a simple physical model (similar to t-SNE, but more physical).

Between each two papers there are two forces:

- repulsion (anti-gravity inverse-distance force)
- attraction of any paper to all its references by a linear spring
- also avoid overlap (circle sizes represent number of citations to that paper)

Every morning, after new papers are announced, the map of all 1.3 million papers on the arXiv is re-calculated (takes 3-4 hours)
The quantum “continent”
[colors represent arXiv categories]
Artistic representation by Roberto Salazar and Sebastian Pizarro: “Quantum Earth”
How to speed up stochastic gradient descent?

- accelerate ("momentum") towards minimum
- Automatically choose learning rate
- ...even different rates for different weights
Summary: a few gradient update methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adagrad</td>
<td>divide by RMS of all previous gradients</td>
</tr>
<tr>
<td>RMSprop</td>
<td>divide by RMS of last few previous gradients</td>
</tr>
<tr>
<td>adadelta</td>
<td>same, but multiply also by RMS of last few parameter updates</td>
</tr>
</tbody>
</table>
| adam | divide running average of last few gradients by RMS of last few gradients (* with corrections during earliest steps) | adam often works best
Please download “Part Two” to continue

http://machine-learning-for-physicists.org